EconPapers    
Economics at your fingertips  
 

Bayesian Forecasting of Stock Returns on the JSE using Simultaneous Graphical Dynamic Linear Models

Nelson Kyakutwika and Bruce Bartlett

Papers from arXiv.org

Abstract: Cross-series dependencies are crucial in obtaining accurate forecasts when forecasting a multivariate time series. Simultaneous Graphical Dynamic Linear Models (SGDLMs) are Bayesian models that elegantly capture cross-series dependencies. This study forecasts returns of a 40-dimensional time series of stock data from the Johannesburg Stock Exchange (JSE) using SGDLMs. The SGDLM approach involves constructing a customised dynamic linear model (DLM) for each univariate time series. At each time point, the DLMs are recoupled using importance sampling and decoupled using mean-field variational Bayes. Our results suggest that SGDLMs forecast stock data on the JSE accurately and respond to market gyrations effectively.

Date: 2023-07
New Economics Papers: this item is included in nep-ecm and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2307.08665 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2307.08665

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2307.08665