Company2Vec -- German Company Embeddings based on Corporate Websites
Christopher Gerling
Papers from arXiv.org
Abstract:
With Company2Vec, the paper proposes a novel application in representation learning. The model analyzes business activities from unstructured company website data using Word2Vec and dimensionality reduction. Company2Vec maintains semantic language structures and thus creates efficient company embeddings in fine-granular industries. These semantic embeddings can be used for various applications in banking. Direct relations between companies and words allow semantic business analytics (e.g. top-n words for a company). Furthermore, industry prediction is presented as a supervised learning application and evaluation method. The vectorized structure of the embeddings allows measuring companies similarities with the cosine distance. Company2Vec hence offers a more fine-grained comparison of companies than the standard industry labels (NACE). This property is relevant for unsupervised learning tasks, such as clustering. An alternative industry segmentation is shown with k-means clustering on the company embeddings. Finally, this paper proposes three algorithms for (1) firm-centric, (2) industry-centric and (3) portfolio-centric peer-firm identification.
Date: 2023-07
New Economics Papers: this item is included in nep-big
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2307.09332 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2307.09332
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().