Derivative Pricing using Quantum Signal Processing
Nikitas Stamatopoulos and
William J. Zeng
Papers from arXiv.org
Abstract:
Pricing financial derivatives on quantum computers typically includes quantum arithmetic components which contribute heavily to the quantum resources required by the corresponding circuits. In this manuscript, we introduce a method based on Quantum Signal Processing (QSP) to encode financial derivative payoffs directly into quantum amplitudes, alleviating the quantum circuits from the burden of costly quantum arithmetic. Compared to current state-of-the-art approaches in the literature, we find that for derivative contracts of practical interest, the application of QSP significantly reduces the required resources across all metrics considered, most notably the total number of T-gates by $\sim 16$x and the number of logical qubits by $\sim 4$x. Additionally, we estimate that the logical clock rate needed for quantum advantage is also reduced by a factor of $\sim 5$x. Overall, we find that quantum advantage will require $4.7$k logical qubits, and quantum devices that can execute $10^9$ T-gates at a rate of $45$MHz. While in this work we focus specifically on the payoff component of the derivative pricing process where the method we present is most readily applicable, similar techniques can be employed to further reduce the resources in other applications, such as state preparation.
Date: 2023-07, Revised 2024-04
References: Add references at CitEc
Citations:
Published in Quantum 8, 1322 (2024)
Downloads: (external link)
http://arxiv.org/pdf/2307.14310 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2307.14310
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().