One-step smoothing splines instrumental regression
Jad Beyhum,
Elia Lapenta and
Pascal Lavergne
Papers from arXiv.org
Abstract:
We extend nonparametric regression smoothing splines to a context where there is endogeneity and instrumental variables are available. Unlike popular existing estimators, the resulting estimator is one-step and relies on a unique regularization parameter. We derive rates of the convergence for the estimator and its first derivative, which are uniform in the support of the endogenous variable. We also address the issue of imposing monotonicity in estimation and extend the approach to a partly linear model. Simulations confirm the good performances of our estimator compared to two-step procedures. Our method yields economically sensible results when used to estimate Engel curves.
Date: 2023-07, Revised 2024-12
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2307.14867 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2307.14867
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().