Machine Learning-powered Pricing of the Multidimensional Passport Option
Josef Teichmann and
Hanna Wutte
Papers from arXiv.org
Abstract:
Introduced in the late 90s, the passport option gives its holder the right to trade in a market and receive any positive gain in the resulting traded account at maturity. Pricing the option amounts to solving a stochastic control problem that for $d>1$ risky assets remains an open problem. Even in a correlated Black-Scholes (BS) market with $d=2$ risky assets, no optimal trading strategy has been derived in closed form. In this paper, we derive a discrete-time solution for multi-dimensional BS markets with uncorrelated assets. Moreover, inspired by the success of deep reinforcement learning in, e.g., board games, we propose two machine learning-powered approaches to pricing general options on a portfolio value in general markets. These approaches prove to be successful for pricing the passport option in one-dimensional and multi-dimensional uncorrelated BS markets.
Date: 2023-07
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2307.14887 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2307.14887
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().