EconPapers    
Economics at your fingertips  
 

Quantitative statistical analysis of order-splitting behaviour of individual trading accounts in the Japanese stock market over nine years

Yuki Sato and Kiyoshi Kanazawa

Papers from arXiv.org

Abstract: In this research, we focus on the order-splitting behavior. The order splitting is a trading strategy to execute their large potential metaorder into small pieces to reduce transaction cost. This strategic behavior is believed to be important because it is a promising candidate for the microscopic origin of the long-range correlation (LRC) in the persistent order flow. Indeed, in 2005, Lillo, Mike, and Farmer (LMF) introduced a microscopic model of the order-splitting traders to predict the asymptotic behavior of the LRC from the microscopic dynamics, even quantitatively. The plausibility of this scenario has been qualitatively investigated by Toth et al. 2015. However, no solid support has been presented yet on the quantitative prediction by the LMF model in the lack of large microscopic datasets. In this report, we have provided the first quantitative statistical analysis of the order-splitting behavior at the level of each trading account. We analyse a large dataset of the Tokyo stock exchange (TSE) market over nine years, including the account data of traders (called virtual servers). The virtual server is a unit of trading accounts in the TSE market, and we can effectively define the trader IDs by an appropriate preprocessing. We apply a strategy clustering to individual traders to identify the order-splitting traders and the random traders. For most of the stocks, we find that the metaorder length distribution obeys power laws with exponent $\alpha$, such that $P(L)\propto L^{-\alpha-1}$ with the metaorder length $L$. By analysing the sign correlation $C(\tau)\propto \tau^{-\gamma}$, we directly confirmed the LMF prediction $\gamma \approx \alpha-1$. Furthermore, we discuss how to estimate the total number of the splitting traders only from public data via the ACF prefactor formula in the LMF model. Our work provides the first quantitative evidence of the LMF model.

Date: 2023-08
New Economics Papers: this item is included in nep-mst
References: Add references at CitEc
Citations:

Published in Phys. Rev. Res. 5, 043131 (2023)

Downloads: (external link)
http://arxiv.org/pdf/2308.01112 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2308.01112

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2308.01112