Composite Quantile Factor Model
Xiao Huang
Papers from arXiv.org
Abstract:
This paper introduces the method of composite quantile factor model for factor analysis in high-dimensional panel data. We propose to estimate the factors and factor loadings across multiple quantiles of the data, allowing the estimates to better adapt to features of the data at different quantiles while still modeling the mean of the data. We develop the limiting distribution of the estimated factors and factor loadings, and an information criterion for consistent factor number selection is also discussed. Simulations show that the proposed estimator and the information criterion have good finite sample properties for several non-normal distributions under consideration. We also consider an empirical study on the factor analysis for 246 quarterly macroeconomic variables. A companion R package cqrfactor is developed.
Date: 2023-08, Revised 2024-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2308.02450 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2308.02450
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().