EconPapers    
Economics at your fingertips  
 

AI exposure predicts unemployment risk

Morgan Frank, Yong-Yeol Ahn and Esteban Moro

Papers from arXiv.org

Abstract: Is artificial intelligence (AI) disrupting jobs and creating unemployment? Despite many attempts to quantify occupations' exposure to AI, inconsistent validation obfuscates the relative benefits of each approach. A lack of disaggregated labor outcome data, including unemployment data, further exacerbates the issue. Here, we assess which models of AI exposure predict job separations and unemployment risk using new occupation-level unemployment data by occupation from each US state's unemployment insurance office spanning 2010 through 2020. Although these AI exposure scores have been used by governments and industry, we find that individual AI exposure models are not predictive of unemployment rates, unemployment risk, or job separation rates. However, an ensemble of those models exhibits substantial predictive power suggesting that competing models may capture different aspects of AI exposure that collectively account for AI's variable impact across occupations, regions, and time. Our results also call for dynamic, context-aware, and validated methods for assessing AI exposure. Interactive visualizations for this study are available at https://sites.pitt.edu/~mrfrank/uiRiskDemo/.

Date: 2023-08
New Economics Papers: this item is included in nep-ain, nep-cmp and nep-lab
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2308.02624 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2308.02624

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2308.02624