EconPapers    
Economics at your fingertips  
 

Extended mean-field control problems with multi-dimensional singular controls

Robert Denkert and Ulrich Horst

Papers from arXiv.org

Abstract: We consider extended mean-field control problems with multi-dimensional singular controls. A key challenge when analysing singular controls are jump costs. When controls are one-dimensional, jump costs are most naturally computed by linear interpolation. When the controls are multi-dimensional the situation is more complex, especially when the model parameters depend on an additional mean-field interaction term, in which case one needs to "jointly" and "consistently" interpolate jumps both on a distributional and a pathwise level. This is achieved by introducing the novel concept of two-layer parametrisations of stochastic processes. Two-layer parametrisations allow us to equivalently rewrite rewards in terms of continuous functions of parametrisations of the control process and to derive an explicit representation of rewards in terms of minimal jump costs. From this we derive a DPP for extended mean-field control problems with multi-dimensional singular controls. Under the additional assumption that the value function is continuous we characterise the value function as the minimal super-solution to a certain quasi-variational inequality in the Wasserstein space.

Date: 2023-08
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2308.04378 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2308.04378

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2308.04378