EconPapers    
Economics at your fingertips  
 

Quantifying Outlierness of Funds from their Categories using Supervised Similarity

Dhruv Desai, Ashmita Dhiman, Tushar Sharma, Deepika Sharma, Dhagash Mehta and Stefano Pasquali

Papers from arXiv.org

Abstract: Mutual fund categorization has become a standard tool for the investment management industry and is extensively used by allocators for portfolio construction and manager selection, as well as by fund managers for peer analysis and competitive positioning. As a result, a (unintended) miscategorization or lack of precision can significantly impact allocation decisions and investment fund managers. Here, we aim to quantify the effect of miscategorization of funds utilizing a machine learning based approach. We formulate the problem of miscategorization of funds as a distance-based outlier detection problem, where the outliers are the data-points that are far from the rest of the data-points in the given feature space. We implement and employ a Random Forest (RF) based method of distance metric learning, and compute the so-called class-wise outlier measures for each data-point to identify outliers in the data. We test our implementation on various publicly available data sets, and then apply it to mutual fund data. We show that there is a strong relationship between the outlier measures of the funds and their future returns and discuss the implications of our findings.

Date: 2023-08
New Economics Papers: this item is included in nep-big
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2308.06882 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2308.06882

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2308.06882