Effects of Daily News Sentiment on Stock Price Forecasting
S. Srinivas,
R. Gadela,
R. Sabu,
A. Das,
G. Nath and
V. Datla
Papers from arXiv.org
Abstract:
Predicting future prices of a stock is an arduous task to perform. However, incorporating additional elements can significantly improve our predictions, rather than relying solely on a stock's historical price data to forecast its future price. Studies have demonstrated that investor sentiment, which is impacted by daily news about the company, can have a significant impact on stock price swings. There are numerous sources from which we can get this information, but they are cluttered with a lot of noise, making it difficult to accurately extract the sentiments from them. Hence the focus of our research is to design an efficient system to capture the sentiments from the news about the NITY50 stocks and investigate how much the financial news sentiment of these stocks are affecting their prices over a period of time. This paper presents a robust data collection and preprocessing framework to create a news database for a timeline of around 3.7 years, consisting of almost half a million news articles. We also capture the stock price information for this timeline and create multiple time series data, that include the sentiment scores from various sections of the article, calculated using different sentiment libraries. Based on this, we fit several LSTM models to forecast the stock prices, with and without using the sentiment scores as features and compare their performances.
Date: 2023-08
New Economics Papers: this item is included in nep-big, nep-cmp and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2308.08549 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2308.08549
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().