Optimal Shrinkage Estimation of Fixed Effects in Linear Panel Data Models
Soonwoo Kwon
Papers from arXiv.org
Abstract:
Shrinkage methods are frequently used to estimate fixed effects to reduce the noisiness of the least squares estimators. However, widely used shrinkage estimators guarantee such noise reduction only under strong distributional assumptions. I develop an estimator for the fixed effects that obtains the best possible mean squared error within a class of shrinkage estimators. This class includes conventional shrinkage estimators and the optimality does not require distributional assumptions. The estimator has an intuitive form and is easy to implement. Moreover, the fixed effects are allowed to vary with time and to be serially correlated, and the shrinkage optimally incorporates the underlying correlation structure in this case. In such a context, I also provide a method to forecast fixed effects one period ahead.
Date: 2023-08, Revised 2023-10
New Economics Papers: this item is included in nep-dcm and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2308.12485 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2308.12485
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().