EconPapers    
Economics at your fingertips  
 

Stochastic Variational Inference for GARCH Models

Hanwen Xuan, Luca Maestrini, Feng Chen and Clara Grazian

Papers from arXiv.org

Abstract: Stochastic variational inference algorithms are derived for fitting various heteroskedastic time series models. We examine Gaussian, t, and skew-t response GARCH models and fit these using Gaussian variational approximating densities. We implement efficient stochastic gradient ascent procedures based on the use of control variates or the reparameterization trick and demonstrate that the proposed implementations provide a fast and accurate alternative to Markov chain Monte Carlo sampling. Additionally, we present sequential updating versions of our variational algorithms, which are suitable for efficient portfolio construction and dynamic asset allocation.

Date: 2023-08
New Economics Papers: this item is included in nep-ecm and nep-ets
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2308.14952 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2308.14952

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2308.14952