EconPapers    
Economics at your fingertips  
 

Hedging Forecast Combinations With an Application to the Random Forest

Elliot Beck, Damian Kozbur and Michael Wolf

Papers from arXiv.org

Abstract: This papers proposes a generic, high-level methodology for generating forecast combinations that would deliver the optimal linearly combined forecast in terms of the mean-squared forecast error if one had access to two population quantities: the mean vector and the covariance matrix of the vector of individual forecast errors. We point out that this problem is identical to a mean-variance portfolio construction problem, in which portfolio weights correspond to forecast combination weights. We allow negative forecast weights and interpret such weights as hedging over and under estimation risks across estimators. This interpretation follows directly as an implication of the portfolio analogy. We demonstrate our method's improved out-of-sample performance relative to standard methods in combining tree forecasts to form weighted random forests in 14 data sets.

Date: 2023-08, Revised 2023-08
New Economics Papers: this item is included in nep-ecm, nep-for and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2308.15384 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2308.15384

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2024-03-31
Handle: RePEc:arx:papers:2308.15384