Target PCA: Transfer Learning Large Dimensional Panel Data
Junting Duan,
Markus Pelger and
Ruoxuan Xiong
Papers from arXiv.org
Abstract:
This paper develops a novel method to estimate a latent factor model for a large target panel with missing observations by optimally using the information from auxiliary panel data sets. We refer to our estimator as target-PCA. Transfer learning from auxiliary panel data allows us to deal with a large fraction of missing observations and weak signals in the target panel. We show that our estimator is more efficient and can consistently estimate weak factors, which are not identifiable with conventional methods. We provide the asymptotic inferential theory for target-PCA under very general assumptions on the approximate factor model and missing patterns. In an empirical study of imputing data in a mixed-frequency macroeconomic panel, we demonstrate that target-PCA significantly outperforms all benchmark methods.
Date: 2023-08
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2308.15627 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2308.15627
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().