EconPapers    
Economics at your fingertips  
 

Fourier Neural Network Approximation of Transition Densities in Finance

Rong Du and Duy-Minh Dang

Papers from arXiv.org

Abstract: This paper introduces FourNet, a novel single-layer feed-forward neural network (FFNN) method designed to approximate transition densities for which closed-form expressions of their Fourier transforms, i.e. characteristic functions, are available. A unique feature of FourNet lies in its use of a Gaussian activation function, enabling exact Fourier and inverse Fourier transformations and drawing analogies with the Gaussian mixture model. We mathematically establish FourNet's capacity to approximate transition densities in the $L_2$-sense arbitrarily well with finite number of neurons. The parameters of FourNet are learned by minimizing a loss function derived from the known characteristic function and the Fourier transform of the FFNN, complemented by a strategic sampling approach to enhance training. We derive practical bounds for the $L_2$ estimation error and the potential pointwise loss of nonnegativity in FourNet for $d$-dimensions ($d\ge 1$), highlighting its robustness and applicability in practical settings. FourNet's accuracy and versatility are demonstrated through a wide range of dynamics common in quantitative finance, including L\'{e}vy processes and the Heston stochastic volatility models-including those augmented with the self-exciting Queue-Hawkes jump process.

Date: 2023-09, Revised 2024-09
New Economics Papers: this item is included in nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2309.03966 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2309.03966

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2309.03966