EconPapers    
Economics at your fingertips  
 

Enhancing accuracy for solving American CEV model with high-order compact scheme and adaptive time stepping

Chinonso Nwankwo, Weizhong Dai and Tony Ware

Papers from arXiv.org

Abstract: In this research work, we propose a high-order time adapted scheme for pricing a coupled system of fixed-free boundary constant elasticity of variance (CEV) model on both equidistant and locally refined space-grid. The performance of our method is substantially enhanced to improve irregularities in the model which are both inherent and induced. Furthermore, the system of coupled PDEs is strongly nonlinear and involves several time-dependent coefficients that include the first-order derivative of the early exercise boundary. These coefficients are approximated from a fourth-order analytical approximation which is derived using a regularized square-root function. The semi-discrete equation for the option value and delta sensitivity is obtained from a non-uniform fourth-order compact finite difference scheme. Fifth-order 5(4) Dormand-Prince time integration method is used to solve the coupled system of discrete equations. Enhancing the performance of our proposed method with local mesh refinement and adaptive strategies enables us to obtain highly accurate solution with very coarse space grids, hence reducing computational runtime substantially. We further verify the performance of our methodology as compared with some of the well-known and better-performing existing methods.

Date: 2023-09, Revised 2023-09
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2309.03984 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2309.03984

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2309.03984