A monotone numerical integration method for mean-variance portfolio optimization under jump-diffusion models
Hanwen Zhang and
Duy-Minh Dang
Papers from arXiv.org
Abstract:
We develop a efficient, easy-to-implement, and strictly monotone numerical integration method for Mean-Variance (MV) portfolio optimization in realistic contexts, which involve jump-diffusion dynamics of the underlying controlled processes, discrete rebalancing, and the application of investment constraints, namely no-bankruptcy and leverage. A crucial element of the MV portfolio optimization formulation over each rebalancing interval is a convolution integral, which involves a conditional density of the logarithm of the amount invested in the risky asset. Using a known closed-form expression for the Fourier transform of this density, we derive an infinite series representation for the conditional density where each term is strictly positive and explicitly computable. As a result, the convolution integral can be readily approximated through a monotone integration scheme, such as a composite quadrature rule typically available in most programming languages. The computational complexity of our method is an order of magnitude lower than that of existing monotone finite difference methods. To further enhance efficiency, we propose an implementation of the scheme via Fast Fourier Transforms, exploiting the Toeplitz matrix structure. The proposed monotone scheme is proven to be both $\ell_{\infty}$-stable and pointwise consistent, and we rigorously establish its pointwise convergence to the unique solution of the MV portfolio optimization problem. We also intuitively demonstrate that, as the rebalancing time interval approaches zero, the proposed scheme converges to a continuously observed impulse control formulation for MV optimization expressed as a Hamilton-Jacobi-Bellman Quasi-Variational Inequality. Numerical results show remarkable agreement with benchmark solutions obtained through finite differences and Monte Carlo simulation, underscoring the effectiveness of our approach.
Date: 2023-09
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2309.05977 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2309.05977
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().