EconPapers    
Economics at your fingertips  
 

Sensitivity Analysis for Linear Estimators

Jacob Dorn and Luther Yap

Papers from arXiv.org

Abstract: We propose a novel sensitivity analysis framework for linear estimators with identification failures that can be viewed as seeing the wrong outcome distribution. Our approach measures the degree of identification failure through the change in measure between the observed distribution and a hypothetical target distribution that would identify the causal parameter of interest. The framework yields a sensitivity analysis that generalizes existing bounds for Average Potential Outcome (APO), Regression Discontinuity (RD), and instrumental variables (IV) exclusion failure designs. Our partial identification results extend results from the APO context to allow even unbounded likelihood ratios. Our proposed sensitivity analysis consistently estimates sharp bounds under plausible conditions and estimates valid bounds under mild conditions. We find that our method performs well in simulations even when targeting a discontinuous and nearly infinite bound.

Date: 2023-09, Revised 2024-04
New Economics Papers: this item is included in nep-ecm and nep-ger
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2309.06305 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2309.06305

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2309.06305