Weak Markovian Approximations of Rough Heston
Christian Bayer and
Simon Breneis
Papers from arXiv.org
Abstract:
The rough Heston model is a very popular recent model in mathematical finance; however, the lack of Markov and semimartingale properties poses significant challenges in both theory and practice. A way to resolve this problem is to use Markovian approximations of the model. Several previous works have shown that these approximations can be very accurate even when the number of additional factors is very low. Existing error analysis is largely based on the strong error, corresponding to the $L^2$ distance between the kernels. Extending earlier results by [Abi Jaber and El Euch, SIAM Journal on Financial Mathematics 10(2):309--349, 2019], we show that the weak error of the Markovian approximations can be bounded using the $L^1$-error in the kernel approximation for general classes of payoff functions for European style options. Moreover, we give specific Markovian approximations which converge super-polynomially in the number of dimensions, and illustrate their numerical superiority in option pricing compared to previously existing approximations. The new approximations also work for the hyper-rough case $H > -1/2$.
Date: 2023-09
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://arxiv.org/pdf/2309.07023 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2309.07023
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().