EconPapers    
Economics at your fingertips  
 

Ordered Correlation Forest

Riccardo Di Francesco ()

Papers from arXiv.org

Abstract: Empirical studies in various social sciences often involve categorical outcomes with inherent ordering, such as self-evaluations of subjective well-being and self-assessments in health domains. While ordered choice models, such as the ordered logit and ordered probit, are popular tools for analyzing these outcomes, they may impose restrictive parametric and distributional assumptions. This paper introduces a novel estimator, the ordered correlation forest, that can naturally handle non-linearities in the data and does not assume a specific error term distribution. The proposed estimator modifies a standard random forest splitting criterion to build a collection of forests, each estimating the conditional probability of a single class. Under an "honesty" condition, predictions are consistent and asymptotically normal. The weights induced by each forest are used to obtain standard errors for the predicted probabilities and the covariates' marginal effects. Evidence from synthetic data shows that the proposed estimator features a superior prediction performance than alternative forest-based estimators and demonstrates its ability to construct valid confidence intervals for the covariates' marginal effects.

Date: 2023-09
New Economics Papers: this item is included in nep-dcm and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2309.08755 Latest version (application/pdf)

Related works:
Working Paper: Ordered Correlation Forest (2024) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2309.08755

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2309.08755