Estimation and Testing of Forecast Rationality with Many Moments
Tae Hwy Lee and
Tao Wang
Papers from arXiv.org
Abstract:
We in this paper utilize P-GMM (Cheng and Liao, 2015) moment selection procedure to select valid and relevant moments for estimating and testing forecast rationality under the flexible loss proposed by Elliott et al. (2005). We motivate the moment selection in a large dimensional setting, explain the fundamental mechanism of P-GMM moment selection procedure, and elucidate how to implement it in the context of forecast rationality by allowing the existence of potentially invalid moment conditions. A set of Monte Carlo simulations is conducted to examine the finite sample performance of P-GMM estimation in integrating the information available in instruments into both the estimation and testing, and a real data analysis using data from the Survey of Professional Forecasters issued by the Federal Reserve Bank of Philadelphia is presented to further illustrate the practical value of the suggested methodology. The results indicate that the P-GMM post-selection estimator of forecaster's attitude is comparable to the oracle estimator by using the available information efficiently. The accompanying power of rationality and symmetry tests utilizing P-GMM estimation would be substantially increased through reducing the influence of uninformative instruments. When a forecast user estimates and tests for rationality of forecasts that have been produced by others such as Greenbook, P-GMM moment selection procedure can assist in achieving consistent and more efficient outcomes.
Date: 2023-09
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2309.09481 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2309.09481
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().