EconPapers    
Economics at your fingertips  
 

Algorithmic Collusion or Competition: the Role of Platforms' Recommender Systems

Xingchen Xu, Stephanie Lee and Yong Tan

Papers from arXiv.org

Abstract: Recent scholarly work has extensively examined the phenomenon of algorithmic collusion driven by AI-enabled pricing algorithms. However, online platforms commonly deploy recommender systems that influence how consumers discover and purchase products, thereby shaping the reward structures faced by pricing algorithms and ultimately affecting competition dynamics and equilibrium outcomes. To address this gap in the literature and elucidate the role of recommender systems, we propose a novel repeated game framework that integrates several key components. We first develop a structural search model to characterize consumers' decision-making processes in response to varying recommendation sets. This model incorporates both observable and unobservable heterogeneity in utility and search cost functions, and is estimated using real-world data. Building on the resulting consumer model, we formulate personalized recommendation algorithms designed to maximize either platform revenue or consumer utility. We further introduce pricing algorithms for sellers and integrate all these elements to facilitate comprehensive numerical experiments. Our experimental findings reveal that a revenue-maximizing recommender system intensifies algorithmic collusion, whereas a utility-maximizing recommender system encourages more competitive pricing behavior among sellers. Intriguingly, and contrary to conventional insights from the industrial organization and choice modeling literature, increasing the size of recommendation sets under a utility-maximizing regime does not consistently enhance consumer utility. Moreover, the degree of horizontal differentiation moderates this phenomenon in unexpected ways. The "more is less" effect does not arise at low levels of differentiation, but becomes increasingly pronounced as horizontal differentiation increases.

Date: 2023-09, Revised 2024-12
New Economics Papers: this item is included in nep-ain, nep-com, nep-ger, nep-ind, nep-pay and nep-reg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2309.14548 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2309.14548

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2309.14548