Approximation Rates for Deep Calibration of (Rough) Stochastic Volatility Models
Francesca Biagini,
Lukas Gonon and
Niklas Walter
Papers from arXiv.org
Abstract:
We derive quantitative error bounds for deep neural networks (DNNs) approximating option prices on a $d$-dimensional risky asset as functions of the underlying model parameters, payoff parameters and initial conditions. We cover a general class of stochastic volatility models of Markovian nature as well as the rough Bergomi model. In particular, under suitable assumptions we show that option prices can be learned by DNNs up to an arbitrary small error $\varepsilon \in (0,1/2)$ while the network size grows only sub-polynomially in the asset vector dimension $d$ and the reciprocal $\varepsilon^{-1}$ of the accuracy. Hence, the approximation does not suffer from the curse of dimensionality. As quantitative approximation results for DNNs applicable in our setting are formulated for functions on compact domains, we first consider the case of the asset price restricted to a compact set, then we extend these results to the general case by using convergence arguments for the option prices.
Date: 2023-09
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2309.14784 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2309.14784
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().