EconPapers    
Economics at your fingertips  
 

Semidiscrete optimal transport with unknown costs

Yinchu Zhu and Ilya O. Ryzhov

Papers from arXiv.org

Abstract: Semidiscrete optimal transport is a challenging generalization of the classical transportation problem in linear programming. The goal is to design a joint distribution for two random variables (one continuous, one discrete) with fixed marginals, in a way that minimizes expected cost. We formulate a novel variant of this problem in which the cost functions are unknown, but can be learned through noisy observations; however, only one function can be sampled at a time. We develop a semi-myopic algorithm that couples online learning with stochastic approximation, and prove that it achieves optimal convergence rates, despite the non-smoothness of the stochastic gradient and the lack of strong concavity in the objective function.

Date: 2023-10, Revised 2025-02
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2310.00786 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2310.00786

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2310.00786