Inference for Nonlinear Endogenous Treatment Effects Accounting for High-Dimensional Covariate Complexity
Qingliang Fan,
Zijian Guo,
Ziwei Mei and
Cun-Hui Zhang
Papers from arXiv.org
Abstract:
Nonlinearity and endogeneity are prevalent challenges in causal analysis using observational data. This paper proposes an inference procedure for a nonlinear and endogenous marginal effect function, defined as the derivative of the nonparametric treatment function, with a primary focus on an additive model that includes high-dimensional covariates. Using the control function approach for identification, we implement a regularized nonparametric estimation to obtain an initial estimator of the model. Such an initial estimator suffers from two biases: the bias in estimating the control function and the regularization bias for the high-dimensional outcome model. Our key innovation is to devise the double bias correction procedure that corrects these two biases simultaneously. Building on this debiased estimator, we further provide a confidence band of the marginal effect function. Simulations and an empirical study of air pollution and migration demonstrate the validity of our procedures.
Date: 2023-10, Revised 2024-06
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2310.08063 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2310.08063
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().