EconPapers    
Economics at your fingertips  
 

Managing Persuasion Robustly: The Optimality of Quota Rules

Dirk Bergemann, Tan Gan and Yingkai Li

Papers from arXiv.org

Abstract: We study a sender-receiver model where the receiver can commit to a decision rule before the sender determines the information policy. The decision rule can depend on the signal structure and the signal realization that the sender adopts. This framework captures applications where a decision-maker (the receiver) solicit advice from an interested party (sender). In these applications, the receiver faces uncertainty regarding the sender's preferences and the set of feasible signal structures. Consequently, we adopt a unified robust analysis framework that includes max-min utility, min-max regret, and min-max approximation ratio as special cases. We show that it is optimal for the receiver to sacrifice ex-post optimality to perfectly align the sender's incentive. The optimal decision rule is a quota rule, i.e., the decision rule maximizes the receiver's ex-ante payoff subject to the constraint that the marginal distribution over actions adheres to a consistent quota, regardless of the sender's chosen signal structure.

Date: 2023-10
New Economics Papers: this item is included in nep-gth, nep-mic and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2310.10024 Latest version (application/pdf)

Related works:
Working Paper: Managing Persuasion Robustly: The Optimality of Quota Rules (2023) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2310.10024

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2310.10024