EconPapers    
Economics at your fingertips  
 

Few-Shot Learning Patterns in Financial Time-Series for Trend-Following Strategies

Kieran Wood, Samuel Kessler, Stephen J. Roberts and Stefan Zohren

Papers from arXiv.org

Abstract: Forecasting models for systematic trading strategies do not adapt quickly when financial market conditions rapidly change, as was seen in the advent of the COVID-19 pandemic in 2020, causing many forecasting models to take loss-making positions. To deal with such situations, we propose a novel time-series trend-following forecaster that can quickly adapt to new market conditions, referred to as regimes. We leverage recent developments from the deep learning community and use few-shot learning. We propose the Cross Attentive Time-Series Trend Network -- X-Trend -- which takes positions attending over a context set of financial time-series regimes. X-Trend transfers trends from similar patterns in the context set to make forecasts, then subsequently takes positions for a new distinct target regime. By quickly adapting to new financial regimes, X-Trend increases Sharpe ratio by 18.9% over a neural forecaster and 10-fold over a conventional Time-series Momentum strategy during the turbulent market period from 2018 to 2023. Our strategy recovers twice as quickly from the COVID-19 drawdown compared to the neural-forecaster. X-Trend can also take zero-shot positions on novel unseen financial assets obtaining a 5-fold Sharpe ratio increase versus a neural time-series trend forecaster over the same period. Furthermore, the cross-attention mechanism allows us to interpret the relationship between forecasts and patterns in the context set.

Date: 2023-10, Revised 2024-03
New Economics Papers: this item is included in nep-big
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2310.10500 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2310.10500

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2310.10500