Survey calibration for causal inference: a simple method to balance covariate distributions
Maciej Ber\k{e}sewicz
Papers from arXiv.org
Abstract:
This paper proposes a~simple, yet powerful, method for balancing distributions of covariates for causal inference based on observational studies. The method makes it possible to balance an arbitrary number of quantiles (e.g., medians, quartiles, or deciles) together with means if necessary. The proposed approach is based on the theory of calibration estimators (Deville and S\"arndal 1992), in particular, calibration estimators for quantiles, proposed by Harms and Duchesne (2006). The method does not require numerical integration, kernel density estimation or assumptions about the distributions. Valid estimates can be obtained by drawing on existing asymptotic theory. An~illustrative example of the proposed approach is presented for the entropy balancing method and the covariate balancing propensity score method. Results of a~simulation study indicate that the method efficiently estimates average treatment effects on the treated (ATT), the average treatment effect (ATE), the quantile treatment effect on the treated (QTT) and the quantile treatment effect (QTE), especially in the presence of non-linearity and mis-specification of the models. The proposed approach can be further generalized to other designs (e.g. multi-category, continuous) or methods (e.g. synthetic control method). An open source software implementing proposed methods is available.
Date: 2023-10, Revised 2024-03
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2310.11969 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2310.11969
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().