EconPapers    
Economics at your fingertips  
 

Dynamic Realized Minimum Variance Portfolio Models

Donggyu Kim and Minseog Oh

Papers from arXiv.org

Abstract: This paper introduces a dynamic minimum variance portfolio (MVP) model using nonlinear volatility dynamic models, based on high-frequency financial data. Specifically, we impose an autoregressive dynamic structure on MVP processes, which helps capture the MVP dynamics directly. To evaluate the dynamic MVP model, we estimate the inverse volatility matrix using the constrained $\ell_1$-minimization for inverse matrix estimation (CLIME) and calculate daily realized non-normalized MVP weights. Based on the realized non-normalized MVP weight estimator, we propose the dynamic MVP model, which we call the dynamic realized minimum variance portfolio (DR-MVP) model. To estimate a large number of parameters, we employ the least absolute shrinkage and selection operator (LASSO) and predict the future MVP and establish its asymptotic properties. Using high-frequency trading data, we apply the proposed method to MVP prediction.

Date: 2023-10
New Economics Papers: this item is included in nep-ecm, nep-fmk and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/2310.13511 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2310.13511

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2024-02-18
Handle: RePEc:arx:papers:2310.13511