Covariate Balancing and the Equivalence of Weighting and Doubly Robust Estimators of Average Treatment Effects
Tymon S{\l}oczy\'nski,
S. Derya Uysal and
Jeffrey Wooldridge
Papers from arXiv.org
Abstract:
How should researchers adjust for covariates? We show that if the propensity score is estimated using a specific covariate balancing approach, inverse probability weighting (IPW), augmented inverse probability weighting (AIPW), and inverse probability weighted regression adjustment (IPWRA) estimators are numerically equivalent for the average treatment effect (ATE), and likewise for the average treatment effect on the treated (ATT). The resulting weights are inherently normalized, making normalized and unnormalized IPW and AIPW identical. We discuss implications for instrumental variables and difference-in-differences estimators and illustrate with two applications how these numerical equivalences simplify analysis and interpretation.
Date: 2023-10, Revised 2025-09
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2310.18563 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2310.18563
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().