Incentivizing Forecasters to Learn: Summarized vs. Unrestricted Advice
Yingkai Li and
Jonathan Libgober
Papers from arXiv.org
Abstract:
How should forecasters be incentivized to acquire the most information when learning takes place over time? We address this question in the context of a novel dynamic mechanism design problem where a designer can incentivize learning by conditioning a reward on an event's outcome and expert reports. Eliciting summarized advice at a terminal date maximizes information acquisition if an informative signal fully reveals the outcome or has predictable content. Otherwise, richer reporting capabilities may be required. Our findings shed light on incentive design for consultation and forecasting by illustrating how learning dynamics shape qualitative properties of effort-maximizing contracts.
Date: 2023-10, Revised 2025-04
New Economics Papers: this item is included in nep-gth and nep-mic
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2310.19147 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2310.19147
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().