Popularity, face and voice: Predicting and interpreting livestreamers' retail performance using machine learning techniques
Xiong Xiong,
Fan Yang and
Li Su
Papers from arXiv.org
Abstract:
Livestreaming commerce, a hybrid of e-commerce and self-media, has expanded the broad spectrum of traditional sales performance determinants. To investigate the factors that contribute to the success of livestreaming commerce, we construct a longitudinal firm-level database with 19,175 observations, covering an entire livestreaming subsector. By comparing the forecasting accuracy of eight machine learning models, we identify a random forest model that provides the best prediction of gross merchandise volume (GMV). Furthermore, we utilize explainable artificial intelligence to open the black-box of machine learning model, discovering four new facts: 1) variables representing the popularity of livestreaming events are crucial features in predicting GMV. And voice attributes are more important than appearance; 2) popularity is a major determinant of sales for female hosts, while vocal aesthetics is more decisive for their male counterparts; 3) merits and drawbacks of the voice are not equally valued in the livestreaming market; 4) based on changes of comments, page views and likes, sales growth can be divided into three stages. Finally, we innovatively propose a 3D-SHAP diagram that demonstrates the relationship between predicting feature importance, target variable, and its predictors. This diagram identifies bottlenecks for both beginner and top livestreamers, providing insights into ways to optimize their sales performance.
Date: 2023-10
New Economics Papers: this item is included in nep-ain, nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2310.19200 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2310.19200
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().