Spectral identification and estimation of mixed causal-noncausal invertible-noninvertible models
Alain Hecq and
Daniel Velasquez-Gaviria
Papers from arXiv.org
Abstract:
This paper introduces new techniques for estimating, identifying and simulating mixed causal-noncausal invertible-noninvertible models. We propose a framework that integrates high-order cumulants, merging both the spectrum and bispectrum into a single estimation function. The model that most adequately represents the data under the assumption that the error term is i.i.d. is selected. Our Monte Carlo study reveals unbiased parameter estimates and a high frequency with which correct models are identified. We illustrate our strategy through an empirical analysis of returns from 24 Fama-French emerging market stock portfolios. The findings suggest that each portfolio displays noncausal dynamics, producing white noise residuals devoid of conditional heteroscedastic effects.
Date: 2023-10
New Economics Papers: this item is included in nep-dcm, nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2310.19543 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2310.19543
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().