EconPapers    
Economics at your fingertips  
 

Spectral identification and estimation of mixed causal-noncausal invertible-noninvertible models

Alain Hecq and Daniel Velasquez-Gaviria

Papers from arXiv.org

Abstract: This paper introduces new techniques for estimating, identifying and simulating mixed causal-noncausal invertible-noninvertible models. We propose a framework that integrates high-order cumulants, merging both the spectrum and bispectrum into a single estimation function. The model that most adequately represents the data under the assumption that the error term is i.i.d. is selected. Our Monte Carlo study reveals unbiased parameter estimates and a high frequency with which correct models are identified. We illustrate our strategy through an empirical analysis of returns from 24 Fama-French emerging market stock portfolios. The findings suggest that each portfolio displays noncausal dynamics, producing white noise residuals devoid of conditional heteroscedastic effects.

Date: 2023-10
New Economics Papers: this item is included in nep-dcm, nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2310.19543 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2310.19543

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-04-01
Handle: RePEc:arx:papers:2310.19543