EconPapers    
Economics at your fingertips  
 

Quantum Computational Algorithms for Derivative Pricing and Credit Risk in a Regime Switching Economy

Eric Ghysels, Jack Morgan and Hamed Mohammadbagherpoor

Papers from arXiv.org

Abstract: Quantum computers are not yet up to the task of providing computational advantages for practical stochastic diffusion models commonly used by financial analysts. In this paper we introduce a class of stochastic processes that are both realistic in terms of mimicking financial market risks as well as more amenable to potential quantum computational advantages. The type of models we study are based on a regime switching volatility model driven by a Markov chain with observable states. The basic model features a Geometric Brownian Motion with drift and volatility parameters determined by the finite states of a Markov chain. We study algorithms to estimate credit risk and option pricing on a gate-based quantum computer. These models bring us closer to realistic market settings, and therefore quantum computing closer the realm of practical applications.

Date: 2023-11
New Economics Papers: this item is included in nep-cmp and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2311.00825 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2311.00825

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2311.00825