The Fragility of Sparsity
Michal Koles\'ar,
Ulrich K. M\"uller and
Sebastian T. Roelsgaard
Papers from arXiv.org
Abstract:
We show, using three empirical applications, that linear regression estimates which rely on the assumption of sparsity are fragile in two ways. First, we document that different choices of the regressor matrix that do not impact ordinary least squares (OLS) estimates, such as the choice of baseline category with categorical controls, can move sparsity-based estimates by two standard errors or more. Second, we develop two tests of the sparsity assumption based on comparing sparsity-based estimators with OLS. The tests tend to reject the sparsity assumption in all three applications. Unless the number of regressors is comparable to or exceeds the sample size, OLS yields more robust inference at little efficiency cost.
Date: 2023-11, Revised 2025-03
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/2311.02299 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2311.02299
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().