Relative Arbitrage Opportunities in an Extended Mean Field System
Nicole Tianjiao Yang and
Tomoyuki Ichiba
Papers from arXiv.org
Abstract:
This paper studies relative arbitrage opportunities in a market with infinitely many interacting investors. We establish a conditional McKean-Vlasov system to study the market dynamics coupled with investors. We then provide a theoretical framework to study a mean-field system, where the mean-field terms consist of a joint distribution of wealth and strategies. The optimal relative arbitrage is characterized by the equilibrium of extended mean-field games. We show the conditions on the existence and the uniqueness of the mean field equilibrium, then prove the propagation of chaos results for the finite-player game, and demonstrate that the Nash equilibrium converges to the mean field equilibrium when the population grows to infinity.
Date: 2023-11, Revised 2024-10
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2311.02690 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2311.02690
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).