EconPapers    
Economics at your fingertips  
 

Advancing Algorithmic Trading: A Multi-Technique Enhancement of Deep Q-Network Models

Gang Hu

Papers from arXiv.org

Abstract: This study enhances a Deep Q-Network (DQN) trading model by incorporating advanced techniques like Prioritized Experience Replay, Regularized Q-Learning, Noisy Networks, Dueling, and Double DQN. Extensive tests on assets like BTC/USD and AAPL demonstrate superior performance compared to the original model, with marked increases in returns and Sharpe Ratio, indicating improved risk-adjusted rewards. Notably, convolutional neural network (CNN) architectures, both 1D and 2D, significantly boost returns, suggesting their effectiveness in market trend analysis. Across instruments, these enhancements have yielded stable and high gains, eclipsing the baseline and highlighting the potential of CNNs in trading systems. The study suggests that applying sophisticated deep learning within reinforcement learning can greatly enhance automated trading, urging further exploration into advanced methods for broader financial applicability. The findings advocate for the continued evolution of AI in finance.

Date: 2023-11
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2311.05743 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2311.05743

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2311.05743