Towards a data-driven debt collection strategy based on an advanced machine learning framework
Abel Sancarlos,
Edgar Bahilo,
Pablo Mozo,
Lukas Norman,
Obaid Ur Rehma and
Mihails Anufrijevs
Papers from arXiv.org
Abstract:
The European debt purchase market as measured by the total book value of purchased debt approached 25bn euros in 2020 and it was growing at double-digit rates. This is an example of how big the debt collection and debt purchase industry has grown and the important impact it has in the financial sector. However, in order to ensure an adequate return during the debt collection process, a good estimation of the propensity to pay and/or the expected cashflow is crucial. These estimations can be employed, for instance, to create different strategies during the amicable collection to maximize quality standards and revenues. And not only that, but also to prioritize the cases in which a legal process is necessary when debtors are unreachable for an amicable negotiation. This work offers a solution for these estimations. Specifically, a new machine learning modelling pipeline is presented showing how outperforms current strategies employed in the sector. The solution contains a pre-processing pipeline and a model selector based on the best model calibration. Performance is validated with real historical data of the debt industry.
Date: 2023-11
New Economics Papers: this item is included in nep-ban, nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2311.06292 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2311.06292
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().