EconPapers    
Economics at your fingertips  
 

Predicting risk/reward ratio in financial markets for asset management using machine learning

Reza Yarbakhsh, Mahdieh Soleymani Baghshah and Hamidreza Karimaghaie

Papers from arXiv.org

Abstract: Financial market forecasting remains a formidable challenge despite the surge in computational capabilities and machine learning advancements. While numerous studies have underscored the precision of computer-generated market predictions, many of these forecasts fail to yield profitable trading outcomes. This discrepancy often arises from the unpredictable nature of profit and loss ratios in the event of successful and unsuccessful predictions. In this study, we introduce a novel algorithm specifically designed for forecasting the profit and loss outcomes of trading activities. This is further augmented by an innovative approach for integrating these forecasts with previous predictions of market trends. This approach is designed for algorithmic trading, enabling traders to assess the profitability of each trade and calibrate the optimal trade size. Our findings indicate that this method significantly improves the performance of traditional trading strategies as well as algorithmic trading systems, offering a promising avenue for enhancing trading decisions.

Date: 2023-11
New Economics Papers: this item is included in nep-big, nep-cmp and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2311.09148 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2311.09148

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2311.09148