Optimal Transport Divergences induced by Scoring Functions
Silvana M. Pesenti and
Steven Vanduffel ()
Papers from arXiv.org
Abstract:
We employ scoring functions, used in statistics for eliciting risk functionals, as cost functions in the Monge-Kantorovich (MK) optimal transport problem. This gives raise to a rich variety of novel asymmetric MK divergences, which subsume the family of Bregman-Wasserstein divergences. We show that for distributions on the real line, the comonotonic coupling is optimal for the majority of the new divergences. Specifically, we derive the optimal coupling of the MK divergences induced by functionals including the mean, generalised quantiles, expectiles, and shortfall measures. Furthermore, we show that while any elicitable law-invariant coherent risk measure gives raise to infinitely many MK divergences, the comonotonic coupling is simultaneously optimal. The novel MK divergences, which can be efficiently calculated, open an array of applications in robust stochastic optimisation. We derive sharp bounds on distortion risk measures under a Bregman-Wasserstein divergence constraint, and solve for cost-efficient payoffs under benchmark constraints.
Date: 2023-11, Revised 2024-04
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2311.12183 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2311.12183
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().