EconPapers    
Economics at your fingertips  
 

A Review of Cross-Sectional Matrix Exponential Spatial Models

Ye Yang, Osman Dogan, Suleyman Taspinar and Fei Jin

Papers from arXiv.org

Abstract: The matrix exponential spatial models exhibit similarities to the conventional spatial autoregressive model in spatial econometrics but offer analytical, computational, and interpretive advantages. This paper provides a comprehensive review of the literature on the estimation, inference, and model selection approaches for the cross-sectional matrix exponential spatial models. We discuss summary measures for the marginal effects of regressors and detail the matrix-vector product method for efficient estimation. Our aim is not only to summarize the main findings from the spatial econometric literature but also to make them more accessible to applied researchers. Additionally, we contribute to the literature by introducing some new results. We propose an M-estimation approach for models with heteroskedastic error terms and demonstrate that the resulting M-estimator is consistent and has an asymptotic normal distribution. We also consider some new results for model selection exercises. In a Monte Carlo study, we examine the finite sample properties of various estimators from the literature alongside the M-estimator.

Date: 2023-11
New Economics Papers: this item is included in nep-ecm, nep-geo and nep-inv
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2311.14813 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2311.14813

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2311.14813