(Frisch-Waugh-Lovell)': On the Estimation of Regression Models by Row
Damian Clarke,
Nicol\'as Paris and
Benjam\'in Villena-Rold\'an
Papers from arXiv.org
Abstract:
We demonstrate that regression models can be estimated by working independently in a row-wise fashion. We document a simple procedure which allows for a wide class of econometric estimators to be implemented cumulatively, where, in the limit, estimators can be produced without ever storing more than a single line of data in a computer's memory. This result is useful in understanding the mechanics of many common regression models. These procedures can be used to speed up the computation of estimates computed via OLS, IV, Ridge regression, LASSO, Elastic Net, and Non-linear models including probit and logit, with all common modes of inference. This has implications for estimation and inference with `big data', where memory constraints may imply that working with all data at once is particularly costly. We additionally show that even with moderately sized datasets, this method can reduce computation time compared with traditional estimation routines.
Date: 2023-11
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2311.15829 Latest version (application/pdf)
Related works:
Working Paper: (Frisch-Waugh-Lovell)' On the Estimation of Regression Models by Row (2023) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2311.15829
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().