Inference for Low-rank Models without Estimating the Rank
Jungjun Choi,
Hyukjun Kwon and
Yuan Liao
Papers from arXiv.org
Abstract:
This paper studies the inference about linear functionals of high-dimensional low-rank matrices. While most existing inference methods would require consistent estimation of the true rank, our procedure is robust to rank misspecification, making it a promising approach in applications where rank estimation can be unreliable. We estimate the low-rank spaces using pre-specified weighting matrices, known as diversified projections. A novel statistical insight is that, unlike the usual statistical wisdom that overfitting mainly introduces additional variances, the over-estimated low-rank space also gives rise to a non-negligible bias due to an implicit ridge-type regularization. We develop a new inference procedure and show that the central limit theorem holds as long as the pre-specified rank is no smaller than the true rank. In one of our applications, we study multiple testing with incomplete data in the presence of confounding factors and show that our method remains valid as long as the number of controlled confounding factors is at least as large as the true number, even when no confounding factors are present.
Date: 2023-11, Revised 2024-10
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2311.16440 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2311.16440
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().