EconPapers    
Economics at your fingertips  
 

A Method of Moments Approach to Asymptotically Unbiased Synthetic Controls

Joseph Fry

Papers from arXiv.org

Abstract: A common approach to constructing a Synthetic Control unit is to fit on the outcome variable and covariates in pre-treatment time periods, but it has been shown by Ferman and Pinto (2019) that this approach does not provide asymptotic unbiasedness when the fit is imperfect and the number of controls is fixed. Many related panel methods have a similar limitation when the number of units is fixed. I introduce and evaluate a new method in which the Synthetic Control is constructed using a General Method of Moments approach where units not being included in the Synthetic Control are used as instruments. I show that a Synthetic Control Estimator of this form will be asymptotically unbiased as the number of pre-treatment time periods goes to infinity, even when pre-treatment fit is imperfect and the number of units is fixed. Furthermore, if both the number of pre-treatment and post-treatment time periods go to infinity, then averages of treatment effects can be consistently estimated. I conduct simulations and an empirical application to compare the performance of this method with existing approaches in the literature.

Date: 2023-12, Revised 2024-03
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2312.01209 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2312.01209

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2312.01209