Optimal insurance with mean-deviation measures
Tim J. Boonen and
Xia Han
Papers from arXiv.org
Abstract:
This paper studies an optimal insurance contracting problem in which the preferences of the decision maker given by the sum of the expected loss and a convex, increasing function of a deviation measure. As for the deviation measure, our focus is on convex signed Choquet integrals (such as the Gini coefficient and a convex distortion risk measure minus the expected value) and on the standard deviation. We find that if the expected value premium principle is used, then stop-loss indemnities are optimal, and we provide a precise characterization of the corresponding deductible. Moreover, if the premium principle is based on Value-at-Risk or Expected Shortfall, then a particular layer-type indemnity is optimal, in which there is coverage for small losses up to a limit, and additionally for losses beyond another deductible. The structure of these optimal indemnities remains unchanged if there is a limit on the insurance premium budget. If the unconstrained solution is not feasible, then the deductible is increased to make the budget constraint binding. We provide several examples of these results based on the Gini coefficient and the standard deviation.
Date: 2023-12
New Economics Papers: this item is included in nep-rmg and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2312.01813 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2312.01813
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().