EconPapers    
Economics at your fingertips  
 

Causal inference and policy evaluation without a control group

Augusto Cerqua, Marco Letta and Fiammetta Menchetti

Papers from arXiv.org

Abstract: Without a control group, the most widespread methodologies for estimating causal effects cannot be applied. To fill this gap, we propose the Machine Learning Control Method, a new approach for causal panel analysis that estimates causal parameters without relying on untreated units. We formalize identification within the potential outcomes framework and then provide estimation based on machine learning algorithms. To illustrate the practical relevance of our method, we present simulation evidence, a replication study, and an empirical application on the impact of the COVID-19 crisis on educational inequality. We implement the proposed approach in the companion R package MachineControl

Date: 2023-12, Revised 2024-10
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2312.05858 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2312.05858

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2312.05858