Dynamic Spatiotemporal ARCH Models: Small and Large Sample Results
Philipp Otto,
Osman Do\u{g}an and
S\"uleyman Ta\c{s}p{\i}nar
Papers from arXiv.org
Abstract:
This paper explores the estimation of a dynamic spatiotemporal autoregressive conditional heteroscedasticity (ARCH) model. The log-volatility term in this model can depend on (i) the spatial lag of the log-squared outcome variable, (ii) the time-lag of the log-squared outcome variable, (iii) the spatiotemporal lag of the log-squared outcome variable, (iv) exogenous variables, and (v) the unobserved heterogeneity across regions and time, i.e., the regional and time fixed effects. We examine the small and large sample properties of two quasi-maximum likelihood estimators and a generalized method of moments estimator for this model. We first summarize the theoretical properties of these estimators and then compare their finite sample properties through Monte Carlo simulations.
Date: 2023-12
New Economics Papers: this item is included in nep-ecm and nep-ure
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2312.05898 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2312.05898
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().