Risk measures based on weak optimal transport
Michael Kupper,
Max Nendel and
Alessandro Sgarabottolo
Papers from arXiv.org
Abstract:
In this paper, we study convex risk measures with weak optimal transport penalties. In a first step, we show that these risk measures allow for an explicit representation via a nonlinear transform of the loss function. In a second step, we discuss computational aspects related to the nonlinear transform as well as approximations of the risk measures using, for example, neural networks. Our setup comprises a variety of examples, such as classical optimal transport penalties, parametric families of models, uncertainty on path spaces, moment constrains, and martingale constraints. In a last step, we show how to use the theoretical results for the numerical computation of worst-case losses in an insurance context and no-arbitrage prices of European contingent claims after quoted maturities in a model-free setting.
Date: 2023-12
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2312.05973 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2312.05973
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().