Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions
Gregory Faletto
Papers from arXiv.org
Abstract:
To address the bias of the canonical two-way fixed effects estimator for difference-in-differences under staggered adoptions, Wooldridge (2021) proposed the extended two-way fixed effects estimator, which adds many parameters. However, this reduces efficiency. Restricting some of these parameters to be equal (for example, subsequent treatment effects within a cohort) helps, but ad hoc restrictions may reintroduce bias. We propose a machine learning estimator with a single tuning parameter, fused extended two-way fixed effects (FETWFE), that enables automatic data-driven selection of these restrictions. We prove that under an appropriate sparsity assumption FETWFE identifies the correct restrictions with probability tending to one, which improves efficiency. We also prove the consistency, oracle property, and asymptotic normality of FETWFE for several classes of heterogeneous marginal treatment effect estimators under either conditional or marginal parallel trends, and we prove the same results for conditional average treatment effects under conditional parallel trends. We provide an R package implementing fused extended two-way fixed effects, and we demonstrate FETWFE in simulation studies and an empirical application.
Date: 2023-12, Revised 2025-04
New Economics Papers: this item is included in nep-big and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2312.05985 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2312.05985
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).